Package index
-
run_m() - Step 1: Building reinforcement learning model
-
rcv_d() - Step 2: Generating fake data for parameter and model recovery
-
fit_p() - Step 3: Optimizing parameters to fit real data
-
rpl_e() - Step 4: Replaying the experiment with optimal parameters
-
data - Dataset Structure
-
colnames - Column Names
-
behrule - Behavior Rules
-
funcs - Core Functions
-
params - Model Parameters
-
priors - Density and Random Function
-
settings - Settings of Model
-
policy - Policy of Robot
-
estimate - Estimate Methods
-
algorithm - Algorithm Packages
-
control - Control Algorithm Behavior
-
func_alpha() - Function: Learning Rate
-
func_beta() - Function: Soft-Max
-
func_gamma() - Function: Utility Function
-
func_delta() - Function: Upper-Confidence-Bound
-
func_epsilon() - Function: \(\epsilon\)–first, Greedy, Decreasing
-
func_zeta() - Function: Decay Rate
-
process_1_input() - multiRL.input
-
process_2_behrule() - multiRL.behrule
-
process_3_record() - multiRL.record
-
process_4_output_cpp() - multiRL.output
-
process_4_output_r() - multiRL.output
-
process_5_metric() - multiRL.metric
-
estimate_0_ENV() - estimate_0_ENV
-
estimate_1_LBI() - estimate_1_LBI
-
estimate_1_MLE() - estimate_1_MLE
-
estimate_1_MAP() - estimate_1_MAP
-
estimate_2_SBI() - estimate_2_SBI
-
estimate_2_ABC() - estimate_2_ABC
-
engine_ABC() - engine_ABC
-
estimate_2_RNN() - estimate_2_RNN
-
engine_RNN() - engine_RNN
-
estimation_methods() - estimation_methods
-
summary(<multiRL.model>) - summary
-
plot(<multiRL.replay>) - plot.multiRL.replay