Skip to contents

Steps

run_m()
Step 1: Building reinforcement learning model
rcv_d()
Step 2: Generating fake data for parameter and model recovery
fit_p()
Step 3: Optimizing parameters to fit real data
rpl_e()
Step 4: Replaying the experiment with optimal parameters

Document

data
Dataset Structure
colnames
Column Names
behrule
Behavior Rules
funcs
Core Functions
params
Model Parameters
priors
Density and Random Function
settings
Settings of Model
policy
Policy of Agent
system
Cognitive Processing System
estimate
Estimate Methods
algorithm
Algorithm Packages
control
Control Algorithm Behavior

Models

TD()
Temporal Differences Model
RSTD()
Risk Sensitive Model
Utility()
Utility Model

Functions

func_alpha()
Function: Learning Rate
func_beta()
Function: Soft-Max
func_gamma()
Function: Utility Function
func_delta()
Function: Upper-Confidence-Bound
func_epsilon()
Function: \(\epsilon\)–first, Greedy, Decreasing
func_zeta()
Function: Decay Rate

Processes

process_1_input()
multiRL.input
process_2_behrule()
multiRL.behrule
process_3_record()
multiRL.record
process_4_output_cpp()
multiRL.output
process_4_output_r()
multiRL.output
process_5_metric()
multiRL.metric

Estimation

estimation_methods()
Estimate Methods
estimate_0_ENV()
Tool for Generating an Environment for Models
estimate_1_LBI()
Likelihood-Based Inference (LBI)
estimate_1_MLE()
Estimation Method: Maximum Likelihood Estimation (MLE)
estimate_1_MAP()
Estimation Method: Maximum A Posteriori (MAP)
estimate_2_SBI()
Simulated-Based Inference (SBI)
estimate_2_ABC()
Estimation Method: Approximate Bayesian Computation (ABC)
estimate_2_RNN()
Estimation Method: Recurrent Neural Network (RNN)
engine_ABC()
The Engine of Approximate Bayesian Computation (ABC)
engine_RNN()
The Engine of Recurrent Neural Network (RNN)

Datasets

TAB
Group 2 from Mason et al. (2024)
MAB
Simulated Multi-Arm Bandit Dataset

Summary

Plot

plot(<multiRL.replay>)
plot.multiRL.replay