Skip to contents

Steps

run_m()
Step 1: Building reinforcement learning model
rcv_d()
Step 2: Generating fake data for parameter and model recovery
fit_p()
Step 3: Optimizing parameters to fit real data
rpl_e()
Step 4: Replaying the experiment with optimal parameters

Document

data
Dataset Structure
colnames
Column Names
behrule
Behavior Rules
funcs
Core Functions
params
Model Parameters
priors
Density and Random Function
settings
Settings of Model
policy
Policy of Robot
estimate
Estimate Methods
algorithm
Algorithm Packages
control
Control Algorithm Behavior

Models

TD()
TD Model
RSTD()
RSTD Model
Utility()
Utility Model

Functions

func_alpha()
Function: Learning Rate
func_beta()
Function: Soft-Max
func_gamma()
Function: Utility Function
func_delta()
Function: Upper-Confidence-Bound
func_epsilon()
Function: \(\epsilon\)–first, Greedy, Decreasing
func_zeta()
Function: Decay Rate

Processes

process_1_input()
multiRL.input
process_2_behrule()
multiRL.behrule
process_3_record()
multiRL.record
process_4_output_cpp()
multiRL.output
process_4_output_r()
multiRL.output
process_5_metric()
multiRL.metric

Estimation

estimate_0_ENV()
estimate_0_ENV
estimate_1_LBI()
estimate_1_LBI
estimate_1_MLE()
estimate_1_MLE
estimate_1_MAP()
estimate_1_MAP
estimate_2_SBI()
estimate_2_SBI
estimate_2_ABC()
estimate_2_ABC
engine_ABC()
engine_ABC
estimate_2_RNN()
estimate_2_RNN
engine_RNN()
engine_RNN
estimation_methods()
estimation_methods

Datasets

TAB
Group 2 from Mason et al. (2024)
MAB
Simulated Multi-Arm Bandit Dataset

Summary

Plot

plot(<multiRL.replay>)
plot.multiRL.replay