
fitting.MLE <- multiRL::fit_p(
estimate = "MLE",
data = data,
behrule = behrule,
colnames = colnames,
models = list(multiRL::TD, multiRL::RSTD, multiRL::Utility),
settings = list(name = c("TD", "RSTD", "Utility")),
algorithm = "NLOPT_GN_MLSL",
lowers = list(c(0, 0), c(0, 0, 0), c(0, 0, 0)),
uppers = list(c(1, 5), c(1, 1, 5), c(1, 5, 1)),
control = list(core = 10, iter = 100)
)
save(fitting.MLE, file = "./fitting.MLE.Rdata")Estimate Methods
With minimal configuration, users can estimate optimal parameters
using four distinct methods. In the following code snippets, I only
highlight the arguments that vary by estimation method.
Unless explicitly noted, other arguments can be duplicated from the
above example.
# How to use MLE as estimate method
fitting.MLE <- multiRL::fit_p(
estimate = "MLE",
control = list(
core = 10, sample = 100, iter = 100
),
...
)
# How to use MAP as estimate method
fitting.MAP <- multiRL::fit_p(
estimate = "MAP",
control = list(
core = 10, sample = 100, iter = 100,
diff = 0.001, patience = 10
),
...
)
# How to use ABC as estimate method
fitting.ABC <- multiRL::fit_p(
estimate = "ABC",
control = list(
core = 10, sample = 100, train = 1000,
tol = 0.1
),
...
)
# How to use RNN as estimate method
reticulate::use_condaenv(condaenv = "your_tensorflow_env_name", required = TRUE)
fitting.RNN <- multiRL::fit_p(
estimate = "RNN",
control = list(
core = 1, sample = 100, train = 1000,
layer = "GRU", units = 128, batch_size = 10, epochs = 100
),
...
)