Skip to contents

Learning Rate: \(\alpha\)

$$Q_{new} = Q_{old} + \alpha_{-} \cdot (R - Q_{old}), R < Q_{old}$$ $$Q_{new} = Q_{old} + \alpha_{+} \cdot (R - Q_{old}), R \ge Q_{old}$$

Inverse Temperature: \(\beta\)

$$ P_{t}(a) = \frac{ \exp(\beta \cdot Q_{t}(a)) }{ \sum_{i=1}^{k} \exp(\beta \cdot Q_{t}(a_{i})) } $$

Usage

RSTD(params)

Arguments

params

Parameters used by the model’s internal functions, see params

Body

RSTD <- function(params){

  params <- list(
    free = list(alphaN = params[1], alphaP = params[2], beta = params[3])
  )

  multiRL.model <- multiRL::run_m(
    data = data,
    behrule = behrule,
    colnames = colnames,
    params = params,
    funcs = funcs,
    priors = priors,
    settings = settings
  )

  assign(x = "multiRL.model", value = multiRL.model, envir = multiRL.env)
  return(.return_result(multiRL.model))
}