Package index
-
Mason_2024_G1 - Group 1 from Mason et al. (2024)
-
Mason_2024_G2 - Group 2 from Mason et al. (2024)
-
run_m() - Step 1: Building reinforcement learning model
-
rcv_d() - Step 2: Generating fake data for parameter and model recovery
-
fit_p() - Step 3: Optimizing parameters to fit real data
-
rpl_e() - Step 4: Replaying the experiment with optimal parameters
-
func_gamma() - Function: Utility Function
-
func_eta() - Function: Learning Rate
-
func_epsilon() - Function: Epsilon Related
-
func_pi() - Function: Upper-Confidence-Bound
-
func_tau() - Function: Soft-Max Function
-
func_logl() - Function: Loss Function
-
optimize_para() - Process: Optimizing Parameters
-
simulate_list() - Process: Simulating Fake Data
-
recovery_data() - Process: Recovering Fake Data
-
summary(<binaryRL>) - S3method summary